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1. Introduction

We propose a new framework called Evolving Systems to describe the self-assembly, or au-
tonomous assembly, of actively controlled dynamical subsystems into an Evolved System
with a higher purpose. An introduction to Evolving Systems and exploration of the essential
topics of the control and stability properties of Evolving Systems is provided. This chapter
defines a framework for Evolving Systems, develops theory and control solutions for funda-
mental characteristics of Evolving Systems, and provides illustrative examples of Evolving
Systems and their control with adaptive key component controllers.

Evolving Systems provide a framework that facilitates the design and analysis of self-
assembling systems. The components of an Evolving System self-assemble, or mate, to form
new components or the Evolved System. The mating of the subsystem components can be
self-directed or agent controlled. The Evolving Systems framework provides a scalable, mod-
ular architecture to model and analyze the subsystem components, their connections to other
components, and the Evolved System. Ultimately, once all the components of an Evolving
System have joined together to form the fully Evolved System, it will have a new, higher
purpose that could not have been achieved by the individual components collectively.

Autonomous assembly of large, complex structures in space, or on-orbit assembly, is an
excellent application area for Evolving Systems. For example, the Solar Power Satellite (SPS)
is a conceptual space structure that collects solar energy, which is then transmitted to Earth
as microwaves (NASA|[1995). The solar array of the SPS, as envisioned in fig. |1} is a complex
structure that could be assembled from many actively controlled components to form a new
system with a higher purpose.

System stability is a trait that could be exhibited by an Evolving System or their com-
ponents. We say that a subsystem trait is inherited by an Evolving System when the system
retains the properties of the trait after assembly. The inheritance of subsystem traits, or genet-
ics, such as controllability, observability, stability, and robustness, in Evolving Systems is an
important research topic.

A critical element of successful on-orbit assembly of flexible space structures is the au-
tonomous control of a structure during and after the connection of two or more subsystem
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Fig. 1. Solar array component of a Solar Powered Satellite, image credit NASA.

components. The inheritance of stability in Evolving Systems is crucial in space applications
due to potential damage and catastrophic losses that can result from unstable space systems.
The subsystem components of an Evolving System are designed to be stable as free-fliers, or
unconnected components, but the Evolving System might fail to inherit stability at any step
of the assembly, resulting in an unstable Evolved System. The fundamental topic of stabil-
ity in Evolving Systems has been a primary focus of our Evolving Systems research (Balas &
Frost, 2007; |[Frost & Balas, |2007a;b; |2008bja} Balas & Frost} 2008; Frost, 2008). In this chapter,
we develop an adaptive key component control method to ensure that stability is inherited in
flexible structure Evolving Systems.

1.1 Description of Evolving Systems

Evolving Systems are dynamical systems that are self-assembled from actively controlled sub-
system components. Central to the concept of Evolving Systems is the idea that an Evolved
System has a higher functioning purpose than that of its subsystem components. For instance,
the subsystem components might include a truss system, optical equipment, control systems,
and communications equipment. If these components are assembled to form a space-based
telescope, this would have a higher purpose than that of the individual components. Sub-
systems could consist of deployed components and self-assembled components. One could
imagine that a space-based telescope, such as the Hubble Space Telescope, could be built as an
Evolving System. The higher functioning purpose of the Evolving System would most likely
come about not directly from the assembly of the subsystem components into a new system,



but as a result of a new controller or agent taking over operation of the Evolving System after
the subsystem components are fully assembled.

It is assumed that the components of an Evolving System would self-assemble, either
through their own knowledge, or through the knowledge of an external agent. Note that
the agent would not be a human, but an autonomous agent with knowledge of the assembly
requirements of the Evolving System. In the Evolving Systems framework presented here,
it is assumed that the positioning of the subsystem components in space and time would be
handled by the agent or the components themselves. Once the components are positioned,
they would be self-directed or agent-directed to assemble with the appropriate components.

The actual connections made between subsystem components in an Evolving System are
envisioned as compliant connections, so no degrees of freedom would be lost as a consequence
of two components joining together in a rigid manner. A key concept in Evolving Systems is
an evolutionary connection parameter, €, that enables the compliant connection to smoothly
go from not existing at all (¢ = 0), to the full compliance of the connection (¢ = 1). The evo-
lution of the connection parameter would occur independent of time. In Evolving Systems of
flexible structures, the compliant connection might be modeled by a spring joining two com-
ponents. Formation flying of imaging satellites to create synthetic apertures could be modeled
as Evolving Systems with virtual forces representing the distance maintained between mem-
bers of the satellite constellation.

In the formulation of Evolving Systems presented here, the evolution of the connection
between components occurs independent of time. We are ignoring time in our formulation
because it is assumed that the mating of the components is not time critical. We are inter-
ested in studying the joining of subsystem components to form an Evolved System, which is
controlled by the evolution of the connection parameter going from zero to one. We say an
Evolving System is fully evolved when all of the connection parameters joining the subsystem
components equal one. An Evolving System is said to be partially evolved when at least one
of its connection parameters never attains the value of 1 due to some event. In the case of a
partially Evolved System, some of the components have failed to completely join together to
form the prescribed configuration of the Evolving System.

Evolving Systems could be used for the design and analysis of self-assembling systems
at all scales. Self-assembly occurs in nature and technology starting at the molecular or nano-
scale (formation of crystals and nanostructures) to the macro-scale (formation of netted com-
puter systems). See Whitesides & Grzybowski| (2002) for an excellent survey of present and
future applications of self-assembly.

The Evolving Systems framework is ideal for systems that are modular and can be scaled
for complexity. If a system can be decomposed into modules, the detailed design process for
each module needs to be performed only once. Parameter variations affecting the module can
often be accommodated by the original design with significantly less effort than a new design
would require. Once the design and validation of the module is complete, scaling the system
to include more modules would be cost effective within the Evolving Systems framework.

1.2 Motivation for Evolving Systems

Future space missions will require on-orbit assembly of large aperture (greater than 10 me-
ters) space systems, possibly at distant locations that prohibit astronaut intervention (Flinn|
2009). Historically, deployable techniques, sometimes in combination with astronaut assis-
tance, have been used for fielding space systems. As the aperture size of the fielded space
structure increases, deployable fielding techniques can become overly complex and unreli-



able. The increasing complexity of space structures, including such missions as the Interna-
tional Space Station (ISS) and the Hubble Space Telescope, often results in the need for extraor-
dinary astronaut and ground crew assistance for assembly, servicing, and upgrades. Evolving
Systems research could facilitate self-assembly and autonomous servicing of complex space
systems (Saleh et al.}|[2002). Additionally, future space missions might entail systems where
the scale, complexity, and distance preclude astronaut assistance due to the inherent risks
and costs associated with direct human involvement in these missions. These considerations
suggest the need for an Evolving Systems framework and methodologies to enable on-orbit
autonomous assembly and servicing of space systems with little or no direct human involve-
ment.

Once an autonomous assembly problem has been solved with the Evolving Systems ap-
proach, the same solution can be used repeatedly or scaled to solve a similar problem. For ex-
ample, the assembly of a large truss structure can be broken down into the assembly of smaller
components. These components might consist of a small number of beams that are assembled
into certain configurations. The designer only needs to develop the methods to assemble a
certain type of component once, then this solution can be repeated to create any number of
similar components. One can envision the development of a repository of designs that could
be reused in different platforms with small modifications or parameterization changes for new
dimensions, configurations, or other characteristics of the components. Evolving Systems en-
ables the scaling and reuse of subsystem components, allowing new platforms to leverage
existing technologies or reuse demonstrated solutions.

Flexible structure Evolving Systems are actively controlled, self-assembling flexible struc-
tures. The autonomous assembly of space structures provides an efficient means to build
very large space structures with the elimination of space walk missions. Removing the as-
tronaut from the assembly of space structures removes the dependency on transportation of
the astronaut to the structure, eliminates the risk to human life, and eliminates the high costs
associated with transporting humans to space. On-orbit assembly also gives the capability to
build and service space systems at distant locations in space that are inaccessible to humans.
A key benefit of Evolving Systems is its ability to enable on-orbit servicing and upgrades to
existing space systems, thereby leveraging our existing space assets to their fullest capability.

The Evolving Systems framework is ideal for exploiting the inherent modularity and scal-
ability of flexible structure space systems to potentially deliver more reliable systems at lower
costs. Space systems that are self-assembled from components can lead to greater launch pack-
ing efficiency than can be achieved in traditionally deployed systems. The component aspect
of Evolving Systems aids in the mitigation of vibration damage associated with the launch
environment by allowing subsystem components to be individually enclosed in energy ab-
sorbing packaging. The modular framework of Evolving Systems allows designers to easily
add redundancy to systems, thereby mitigating risks. Evolving Systems has the potential
to solve difficult autonomous assembly and on-orbit servicing missions of flexible structure
space systems, hence, the framework and the control problems investigated here are tailored
to the application of flexible structure Evolving Systems.

1.3 Previous Research

Decentralized control theory and analysis has been applied to the control of large intercon-
nected systems; see the excellent survey paper by Nils Sandell (Sandell, Jr. et al.,|1978) on this
topic. Generally, decentralized control has been used to decrease the complexity of the con-
trol issues affecting large interconnected systems. Several researchers have proposed meth-



ods to decompose large interconnected systems into subsystems which can then be analyzed
for stability properties and for the use of decentralized control methodologies (Michel, [1983;
Willems), (1986} [Corfmat & Morse, [1976b). These ideas are related, but not equivalent to the
Evolving Systems viewpoint.

Formations or constellations of satellites, nano-satellites, or micro-spacecraft could be in-
cluded in the Evolving Systems framework. These formations of multiple, low cost spacecraft
enable missions to accomplish complex objectives with the benefit of greater redundancy, im-
proved performance, and reduced cost. An especially challenging control problem for con-
stellations having large numbers of satellites is the task of coordinating and controlling the
relative distances and phases between members of the fleet (Mueller et al.,2001;|Kapilal, 1999).
The solutions proposed in this work are specific to the application of constellations of satel-
lites, and so are not as general as the Evolving Systems framework we are presenting here.

On the experimental side, a research group at the Information Sciences Institute at the
University of Southern California (USC) has been conducting research in self-reconfigurable,
autonomous robots and systems. They have conducted experimental work to study the feasi-
bility of techniques for assembling large space structures as part of their FIMER (Free-flying
Intelligent MatchmakER robots) project (Suri et al., |2006; [Shen et al., 2003). This group uses
a distributed control method with simple proportional derivative control laws for the self-
assembly of components.

2. Theoretical Formulation of Evolving Systems

This section provides the general theoretical formulation of Evolving Systems, expanding on
work first presented in (Balas et al.,[2006). In the previous section, we introduced the reader to
the variety of dynamical systems that can be modeled by Evolving Systems and some of the
benefits applications can obtain by using the Evolving Systems approach. Flexible structures
are relatively simple, generally well understood mechanical dynamic systems, so they will
be used to illustrate many ideas presented here. The state space representation developed
in this section will be for general linear time-invariant (LTT) Evolving Systems, although the
framework can be easily extended to account for nonlinear time-invariant and time varying
Evolving Systems.

2.1 General Formulation of Evolving Systems
In this section we give the general mathematical formulation of Evolving Systems. Consider a
system of L individually actively controlled components, where the components are given by

{ Xj = ﬂ(xi/ui); Xi(o) = X0 (1)
vi = &xiui)
. P i 1T . . ei winT
wherei=1,2,...,L,x; = [x’lx’z .- -x;i] is the component state vector, x; = [x’lx’2 e xhj S0 =
.o CaT . . . 1T .

[u’lul2 e ulmi} is the control input vector, y; = [y’lylz e y;i] is the vector of sensed outputs,
and x;, is the vector of initial conditions. Note that #; is the dimension of the state vector
x;, m; is the dimension of the control vector u;, and p; is the dimension of the output vector
y;. Each component has an objective to be satisfied by the perfomance cost function J;. Local
control that depends only on local state or local output information will be used to keep the
components stable and to meet the component performance requirements, J;. In general, the



local controller for a Evolving System component would have the form given by

u = hi(z)
{21 = li(ziyi) @)

where h; and [; are control operators and z represents the dynamical part of the control law.
The components are the building blocks of the Evolving System. When these individual
components join to form an Evolving System, the interconnections between components i
and j are represented by the function k;;(x,u). The connection parameter, €;;, multiplies the
interconnections between components i and ;.
The subsystem components of the Evolving System with the interconnections included is
given by

L
filxi,w;) + Z;eijkij(xru)
]:

yi = 8&i(x,u)

Xj

®)

where x = [x1Xp - - X[ ] T u= [uguy - up ] T and0< ;<1

The connection parameter, €;;, is a mathematical construct representing the evolutionary
joining of components in an Evolving System. The connection parameter evolves continu-
ously from zero to one as the components assemble. The connection parameter is zero when
the components are unconnected, or free-fliers. In the free-flier configuration, the components
are completely independent of each other. The concept of partial evolution versus full evo-
lution is an important distinction in Evolving Systems. Full evolution of two components
occurs when the evolution parameter controlling the connection of the components evolves
completely, resulting in the connection reaching its full magnitude and the components being
joined together. Partial evolution is the case where, for some reason, the connection param-
eter €;; joining two components fails to attain the value of 1, resulting in the failure of the
two components to join together. An important characteristic of the Evolving Systems frame-
work is that the evolution process of a system comprises the homotopies 0 < €;; <1, not just the
endpoints where €;; =0 or ¢;; = 1. In Evolving Systems, the mating of components is indepen-
dent of the evolution of time in the system. The time parameter and the connection parameter
are uncoupled in Evolving Systems because the connection parameter completely defines the
evolutionary joining of components.

When the subsystem components join to form an Evolved System, the new entity becomes

x = f(xu)
{y = glxu) )

2.2 Finite Element Method Formulation of Evolving Systems of Linear Flexible Structures

A flexible structure Evolving System is a mechanical dynamical system consisting of actively
controlled flexible structure components that are joined together by compliant forces, e.g.,
springs. A practical and well accepted representation of flexible structures is based on the
finite element method (FEM), see Balas| (1982); [Meirovitch| (2001). The fundamental law gov-
erning mechanical systems is Newton’s second law, which we use to write the dynamical
equations describing a flexible structure. The FEM of the lumped model in physical coordi-
nates, q;, for an arbitrary actively controlled flexible structure component, i, with n elements,



m control inputs, and p outputs is given in matrix form as

{ M;q;(t) + D;q;(t) + Kiq;(t) = Biu;(t);9;(0) = qip 5)
yi(t) = Ciq;(t) + E;q;(t)

where M; = diag(my,my, ..., my) is the nxn element mass matrix, q; (t) = [q1(£)q2(f) -+ - g (t)] T

is the displacement vector, §;(t) = [ql(t)qz(t)---q,,(t)f is the velocity vector, §;(f) =

[41 (£)da (t) -~ -q’n(t)f is the acceleration vector, D; is the nxn element damping matrix, K;
is the nxn element stiffness matrix, B; is the nxm matrix of control input constants, u;(¢) =

[u1 (t)up(t) - --um(t)]T are the control inputs, y;(t) = [y1(t)y2(t) - ~yp(t)}T is the vector of
sensed outputs of the component, and C; and E; are the pxn matrices of output constants.

The damping in space structures in orbit above the atmosphere is expected to be quite
small and can be well modeled by Rayleigh damping (Balas|[1982) as given by

D; = syM; + 2K; (6)

Because the damping is quite small, it is customary to use the undamped generalized eigen-
problem for eq. | given by

(K — M) g =0 @)
wherek =1,2,...,H, M; is symmetric, positive definite, K; is symmetric, positive semidefinite,
and H is equal to the number of degrees of freedom (DOF) in the physical model. The mode

shapes ¢y and the mode frequencies wy are calculated from the generalized eigenproblem.
Modal coordinates, z, are obtained from the transformation

q=>z (8

where ® = [¢1 ¢» -+ ¢p|. Generally, the number of modes computed for design and
analysis is much smaller than the number of DOF included in the physical model (Bansenauer
& Balas| [January-February 1995).

The active control of each flexible structure component is local in the sense that the con-
troller only uses the input and output ports located on its component. In the examples pre-
sented here, the active component control is in the form of Proportional Derivative (PD) con-
trol or Proportional Integral Derivative (PID) control.

The flexible structure components are the building blocks of the Evolving System. Any
number of components can join together in an arbitrary, but predetermined, configuration to
form an Evolved System. The components of an Evolving System are joined by connection
forces operating on the displacements of physical coordinates within the components. The
connection forces joining the components are modeled by linear springs connecting two ele-
ments, one from each component. Note that the connections could also be made through the
velocities of the physical coordinates, with dampers connecting the components.

For the flexible structure Evolving System being described here, each connection force, or
spring, joining physical coordinates from two components will be multiplied by a connection
parameter. The symbol ¢;; will denote the connection parameter that multiplies the forces joining
the i and the j" components. For simplicity, the formulation of Evolving System presented
here will only allow one connection parameter to multiply the forces joining two components.
However, it would be possible to construct more complex flexible structure Evolving Systems
which have multiple, distinct connection parameters corresponding to the forces joining dif-
ferent physical coordinates of two subsystem components.



The connection forces between components of an Evolving System are represented in the
connection matrix, Kg(€;;), which multiplies the displacements of the component elements
and has the form

Kg(ejj) = [Kij(ei]')} ©)
where i,j =1,2,...L. The connection parameter, €ij, multiplies the elements of the connection
matrix corresponding to the connection forces joining physical coordinates of component i to
coordinates of component j, where i # j, i.e., components i and j are separate components.
There is only one connection parameter connecting component i to component j, so €ij = €ji.

If there are no connections between any elements of components i and j, then €;; = 0 and
Kij(eij) = Kji(€;j) = 0. The connection matrix has zero entries for the elements of components
that have nothing connected to them. There are no cyclic connections within components
represented in the connection matrix, so €;; = 0. Since Kg (e,-]-) is a matrix of connection forces
that are symmetric, Kj;(€;j) = K,-]-(eii)T.

The off-diagonal elements of the connection matrix have the form

k(@) e k@)
Kij(eij) = —€ij - : ' : (10)

k(i by oo k(i i)

where i" represents the nt" element of the it" component, j" represents the mt" element of the
j" component, k(i",j™) is the connection force exerted by the n' element of component i on
the m!" element of component j, and the values i, and j, represent the number of elements in
the i and the j" component FEM representations, respectively.

The block diagonal elements, K;;(€;;), of the connection matrix are more complex, since
they represent the connection forces of all of the components in the Evolving System which
connect to component . If more than one component connects to a given component i, then
K;i(€;j) will include multiple connection parameters. A general form of the block diagonal

elements of the connection matrix is given by
L Jn 1. L Jn 0 L Jn L
Kii(e;j) =diag | Y e Y k(i',j™), Y e Y k(%,5™),..., Y e Y k(i™,j™) (11)
=1 m=1 =1 m=1 j=1 m=1
We can write an individual component of the flexible structure Evolving System as
L

M;d;(t) + D;qi(t) + Kiqi(t) + ) Kij(ei)q;(t) = Biuj(t); qi(0) = qi (12)
yi(t) = Ciqi(t) + E;qi(t)

The Evolving System consisting of L interconnected components can now be written in
matrix form as

{ Mog(t) + Doq(t) + Koq(t) + Kg(eij)q(t) = Bou(t); q(0) =qo (13)
y(t) = Coq(t) + Eoq(t)

where My = diag(M1,Mz,..., M), Bg = diag(B1,Bz,...,BL), q(t)

[q1(£)qz(t)---qu(t)] ",
a(t) = [ar(Ha2(t) - ac®)]”, () = [Ga(Dd2(8) - Ge()]", ult) !
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Ko = diag(Ky,Ky,...,KL), Kg(ej;) is the connection matrix as described above, y(t) =

[y1(t)y2(t)---yL(t)] T €y =diag(Cy,Cy,...,CL), and Eg = diag(Ey, Ea, ..., E ). For simplicity
of notation, the time parameter, , will be omitted henceforth.

The evolution of the different connection parameters, €ij, that enable the mating of com-
ponents is controlled by the self-assembling components or the agent. The various connection
parameters can evolve at different times during the assembly of the Evolving System, thereby
orchestrating the assembly order of the components. It is also possible to envision the evo-
lution of the connection parameters proceeding at different rates, effectively causing the as-
sembly of some components to be accomplished more rapidly than others. However, we will
not address the evolution rate of the connection parameter at this time. The Evolving Systems
framework allows the evolution of two components to be undone, i.e., connected components
can devolve, where their connection parameter goes from one down to zero.

The flexible structure Evolving Systems described above are some of the simplest exam-
ples of dynamic behavior where the nature of Evolving Systems can be investigated. The ap-
proaches developed here can be generalized rather easily and scaled for much more complex
Evolving Systems.

The matrix notation which we have developed for flexible structure Evolving Systems
is useful for understanding the formulation of Evolving Systems, however, a model based
on a state space representation of Evolving Systems will prove essential as we analyze more
complex Evolving Systems.

2.3 State Space Description of Flexible Structure Evolving Systems

A state space representation of linear time-invariant Evolving Systems is developed here. Sup-
pose we have a flexible structure Evolving System consisting of L individual components as
described in section[2.2]and given by the FEM

{ M;§; + D;q + K;iq; = BYu;; q;(0) = qy (14)
yi = Cq; + Eiq;

We can represent the individual flexible structure components given by eq. by the
state-space description
€
yi

. P 1T . . 1T
wherei=1,2,...,L,x; = [xllx’zn-x;‘_] is the component state vector, X; = [x’lx'z---xlni} ,u; =

Aix; + Bju;; x;(0) = xj,
Cix;

(15)

[”ﬁ ué el J T is the control input vector, y; = [yll yé e y;x} ! is the vector of sensed outputs,
X;, is the vector of initial conditions, and A;, B;, and C; are constant matrices of dimension 7; x
n;, n; x m;, and p; x n;, respectively. Since the state space description comes from the dynamical
equations given by eq. [14f we have that A; = {—M(:—lKj _Mj_lDl} , Bi = {Mi_olB?} and
C; = [CE.J E?]. Note that n; is the dimension of the state vector x;, m; is the dimension of
the control vector u;, and p; is the dimension of the output vector y;. The local controller on
component i is given by

u; = liy; (16)

where ; is a linear control operator.



The subsystem components are the building blocks of the Evolving System. The connec-
tion forces between two components, i and j, of an Evolving System are represented in the con-
nection matrix, Aij/ which is multiplied by the connection parameter, €ij, wherei,j=1,2,...,L,
i#j,and 0 < €ij < 1. Even though connections may exist between the states of different com-
ponents of the Evolving System, the component inputs and outputs are still local, i.e., there is
no sharing of component inputs or outputs between components.

The FEM representation of a flexible structure Evolving System component is given by

L
M;§; + Diq; + Kiq + ) Kij(e;)q; = BYw;; q;(0) = qio 17)
=1

yi = Clq; + Eiq;

The state space equations for an individual component including connections to other
components in an Evolving System are given by

L
).(i = Aixi + B,-ui + ZeiinjX; Xi(O) =X, (18)
j=1

yi = G

T. . . .
where x = [x1x2 ‘e xL] is the concatenated state vectors of the entire Evolving System, A;; is
the connection matrix, and 0 < €ij <1is the connection parameter. The connection matrix, A,-]-,
has dimension n; by dim(x), where n; is the dimension of the state vector x; corresponding

L

to component i and dim(x) = Z ng. In eq. the matrix Kj;;(e;;) multiplies the vector q;.
k=1

The elements of the matrix A;; are related to the elements of K;;(e;;), except that they are mass

normalized by Mi_l and rearranged so that they multiply the elements of x corresponding to

q;- The other elements of A;; are set to zero.

The connection parameter, €ij, multiplies the forces connecting the physical coordinates of
component i to physical coordinates of component j. The connection parameter is the same in
the state space representation as in the FEM flexible structure model. If there is no connection
between any states of components i and j, then €jj = 0 and the connection matrix A= 0.

When a system of L individual components, as described by eq. mate to form an
Evolving System, the new entity becomes

x = A(e;j)x+Bu; x(0) =xo
{ y = & 4
T . .. . 1T T T
where x = [xqxz---xr ], X = [X1X2---x ], u = [wuz---ur]’, y = [yiy2---yi) s
B = diag(Bl,Bz,...,BL), C = diag(Cl,Cz,...,CL), A(é‘l‘]‘) =
T

L L L
LZ €1jAqj Z €jAg; -+ Z €LjArj| and 0 < €; < 1. The system given by eq. |19 will
i=1 j=1 j=1
also be represented by the standard state space notation of (A, B,C).
We can form the closed-loop Evolving System by taking the Evolving System given by eq.
and connecting each of the local component controllers, u;, to their corresponding input




and output ports, i.e., close the loops in each of the components. The closed-loop Evolving
System can be written as

z=A(ejj)z; 2(0) = [XOO]T (20)
wherez = [x 7] T is the augmented state vector, A(eij) is the closed-loop system, and ¢;; is
the connection parameter. The closed-loop Evolving System given by eq. 20| will be used for
stability analysis.

Flexible structure Evolving Systems can be written in a form that is mass normalized and
the component state vectors can be rearranged to appear as one flexible structure, instead
of multiple component state vectors concatenated together. The state space description of
flexible structure Evolving Systems can be easily extended to describe other applications of
Evolving Systems.

2.4 Impedance-Admittance Formulation of Contact Dynamics in Evolving Systems

In this section, we formulate the contact dynamics in Evolving Systems in terms of mechanical
impedance and admittance, as first described in (Frost & Balas| [2007a). For many dynamical
systems, the impedance-admittance form is a useful tool for modeling the contact dynamics
of components, see Harris & Crede|(1976).

Definition 2.1 The impedance of a mechanical system is determined by the equation f = Z(v), where
f is the force exerted by the system, v is the velocity of the system, and Z is the impedance of the system.

Definition 2.2 The admittance of a mechanical system, Y, is the inverse of the impedance of the sys-
tem,e.g., Y =Z"1and v="Y(f).

Impedance and admittance can be seen as nonlinear operators describing the relationship
between the output of a mechanical system, or the force it exerts at a contact point, with the
input of the system, or the velocity at the contact point. When two components join at a point
of contact, their velocities are equal and the forces exerted are equal and opposite. If the con-
tact points of the two components are represented as (f1,v1) and (f2,v2) with displacements
g1 and g5, then we can write

{fl = —f 1)

v = (1=02=4

This formulation can also be seen as the feedback connection of two components in an
Evolving System, where the admittance of component 1 is connected in feedback with the
impedance of component 2, as shown in fig. 2| We introduce two nonlinear operators Y; and
Z, that provide the admittance and impedance formulation of the contact dynamics of nonlin-
ear Evolving Systems components. These operators relate the force and velocity at the contact
point of two mating components as given by the equations v; = Y; (f;) and f; = Z,(v;). In lin-
ear time-invariant systems, these operators can be easily calculated using Laplace transforms.
For nonlinear components, the admittance and impedance operators cannot be easily found.
However, this does not invalidate the analysis provided in this chapter, which will provide a
foundation for adaptive key component control.



Fig. 2. Admittance-impedance feedback connection of two components.

3. Stability Inheritance in Evolving Systems

The application of Evolving Systems to self-assembly of structures in space imposes the need
for the inheritance of stability. Many textbooks (Vidyasagar, [1993} [Brogan| [1991} [(Ogata) 2002}
[Slotine & Li| [1991) give excellent discussions of linear and nonlinear systems stability anal-
ysis. For linear time-invariant Evolving Systems, we will examine the closed-loop poles of
the system to evaluate the stability of the system as it evolves. In particular, we will examine
the eigenvalues of the matrix A(e;;) from the state space equation of the closed-loop Evolving
System given by eq. @ as €;j goes from 0 — 1. The system is unstable if any of the closed-loop
poles cross the jw-axis.

Example 1 is a two component Evolving System where each of the components is ac-
tively controlled and stable, but the Evolving System fails to inherit the stability traits of the
components. This particular system becomes unstable during the evolution process and re-
mains unstable when the system is fully evolved. Consider the fully actuated, fully sensed
three mass Evolving System shown in fig. 3} Component 1 contains only one mass with local
control. The dynamical equations for component 1 are

{mlfh = )

yi = [n 071]T

where m; = 30 is the mass of mass 1, g1 is the displacement of mass 1, and
17 = —(0.9s + 0.1)q; is the local controller for component 1 with the Laplace variable s.
The dynamical equations for component 2 are

Moy = Uy —koz(q2 —q3)
S I -
M3 iy .23(;73 q2) 23)
y2 = [12 4]
1T
y3 = [43 ds]

where my = 1.0 is the mass of mass 2, m3 = 1.0 is the mass of mass 3, g, is the displacement of
mass 2, g3 is the displacement of mass 3, and k3 = 1.0. The controllers on component 2 are

0.1
{ wy = - (? +0.2s +0.5) 72 (24)

us = —(0.6s+1)gs



The controllers for components 1 and 2 have been designed to produce stable behavior
when the components are unconnected. The two components are joined by a spring connect-
ing mass 1 with mass 2. The Evolving System comprised of these two components can be
written in the matrix form of eq. [I3]as

Mo = Bou—Koq— Kg(e;;
0q - ou ho E(ez])q (25)
y = Colq ¢
. N o qT T T T
where My = diag(my,mz,m3), § = [di4243] , 4 = [q192q3] v = [wyuaus] ', y = [y1yays] .
0 o0 0 €nkiy  —epkip 0
Bo=1I3,Co=1s, Ko= |0 ko3 —kn3|, Kg(ej)= |—€nkix enkin 0|, kip=10,and
0 —ky3 ko3 0 0 0
0<ep <1l
Component 1 Component 2

Fig. 3. Ex. 1: A two component flexible structure Evolving System.

Matlab and Simulink models of this system were created. To determine the stability of
the Evolving System, we connect the local component controllers to their inputs and outputs,
and we examine the closed-loop poles, or the eigenvalues, of the resulting composite system.
Figure [4 shows the closed-loop poles of the Evolving System given by equation 25] as the
system evolves, i.e., as €15 goes from 0 to 1. Note that two of the closed-loop poles of ex. 1 cross
the jw-axis for some €1, > 0, demonstrating that the Evolving System loses stability during
evolution. When the system is fully evolved, i.e., €1 = 1, the Evolved System is unstable, i.e.,
it fails to inherit the stability of its components, as seen in fig. [4}

In the next section, we explore a method to restore stability to Evolving Systems that
would otherwise fail to inherit the stability traits of their components.

4. Key Component Controllers

In this section we introduce the idea of controllers that stabilize flexible structure Evolving
Systems during evolution. Often the design requirements for an Evolving System dictate that
the individual components remain unchanged as much as possible. For situations where sta-
bility is not inherited during evolution, in many cases it would be advantageous to augment
the controller on only one component to restore stability to the entire Evolving System, thereby
leaving the other components and their controllers unmodified. Furthermore, it is desirable
for the augmented controller to only use the input-output ports on the component on which
it resides. In this section, we introduce the idea of key component controllers that restore sta-
bility to an Evolving System by augmenting the controller on a single subsystem component,
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Fig. 4. Closed-loop poles of Ex. 1.

using only the input-output ports on that component. The key component controller using
fixed gains was first proposed in (Frost & Balas} 2007b).

In the key component controller design approach, one key component is chosen from the
Evolving System to have additional local control added to it with the objective of maintaining
system stability during the entire evolution of the system. The control and sensing of the other
subsystem components will be unaltered and remain local. The key component controller
operates solely through a single set of input and output ports on the key component, see
fig. ] For components that lose stability when assembling, the individual components could
mate with the key component one at a time. The key component would compensate for any
component which caused instability, thereby restoring stability to the system.

Key
Component

Component 1

Fig. 5. Block diagram of key component controller and Evolving System.

A clear advantage of the key component design approach is that components can be
reused in many different configurations of Evolving Systems without needing redesign from a
stability point of view. Redesign of existing components is unnecessary because the key com-
ponent will be responsible for maintaining overall system stability. The reuse of components
that are space-qualified, or at least previously designed, built, and verified and validated,
could reduce overall system development and validation time and could result in higher qual-
ity systems with potentially significant cost savings and risk mitigation.



The key component controller design requires the controllability and observability of the
states of the Evolving System from a set of input and output ports on the key component.
In the case of LTI Evolving Systems, we can use a method of applying local output feedback
through specified input ports to obtain controllability and observability from a single set of
input-output ports. Details of the method are given in (Corfmat & Morse, |1976a). Applying
local output feedback on a component is seen as a minor modification that still preserves the
idea of leaving the nonkey components mostly unmodified.

4.1 Adaptive Key Component Controllers for Restoring Stability in Evolving Systems
We present a key component controller that uses a direct adaptive control law to restore stabil-
ity to an Evolving System. In many aerospace environments and applications, the parameters
of a system are poorly known and difficult and costly to obtain. Control laws that use direct
adaptation are a good design choice for systems where access to precisely known parametric
values is limited, since these control laws adapt their gains to the system output. We propose
the use of adaptive control laws in a key component controller to provide a practical solution
to the problems described above. This approach was first proposed in (Frost & Balas}[2008b).

The adaptive key component controller adapts its gains based on the system outputs to
ensure that the Evolving System remains stable during component assembly. The adaptive
key component design has the same advantages as the fixed gain key component controller
without the need to schedule the gains based on the value of €.

We consider an Evolving System consisting of two components given by:

{)’( = A(e)x+Bu; x(0) =x¢ 26)

y = Cx

where x = [x1x2] T, x = [x'lx'z]T, u= [ulug]T, y = [ylyz]T, B = diag(By1,B2), C =
T

2 2
diag(C1,Cz), A(e) = diag(A1,Az) + LZ €Ayj) €Ayl and0<e<1.
i=1 j=1

Now we give the equations for an Evolving System with a key component controller.
Without loss of generality, we can let component 1 be the key component since the system can
be rewritten to switch component 1 with component 2. Also, we may think of component 2 as
being the rest of the Evolving System to which the key component and its adaptive controller
will be connected. The adaptive key component controller on component 1 is given by

A A
= Gyy 27)
{ G = -yi(y{)™H; H>0

The adaptive key component controller only uses the input and output ports located on com-
ponent 1. Component 1, which is the key component of the system, can be written as

2
X1 A1x1 + Biug + Bf‘uf‘ + Zé‘Alj(x);
=1 (28)
yi = Cixq
yi = Cixa



and component 2 can be written as

2
X2 = Ajxy+ Bouy + BZAuQ + ZeAzj(x)
j=1 (29)
y2 = GCoxo
2 = Cix

where the augmented control u? would only be present if additional output feedback control
were needed to satisfy sufficient condition for the adaptive controller. Next, we give some
useful definitions.

Definition 4.1 Consider a linear system (A, B, C) with closed-loop transfer function, T.(s) = C(sI —
A)B. We say the system (A,B,C) is strict positive real (SPR) when for all w real and for some o > 0

Re[T.(—0 + jw)] >0 (30)

Definition 4.2 We say a linear system (A, B, C) is almost strict positive real (ASPR) when it can be
made strict positive real by adding output feedback.

Remark: A linear system (A, B, C) is ASPR if it has no nonminimum phase zeros and CB > 0.

The following result from (Fuentes & Balas| 2000) gives the sufficient condition for a linear
time-invariant system with an adaptive control law as described above, to be guaranteed to
have bounded gains and asymptotic output tracking.

Theorem 4.3 Assume the linear time-invariant system given by

{ x(t) = Ax(t) +Bu(t); x(0) =x¢ (31)
y(t) = Cx(t)
is ASPR. Then the direct adaptive control law
u(t) = Gy(t);
{ G = —yty®)™H; H>0 (32)

produces bounded adaptive gains, G, andy — 0as t — oo

This result suggests that the sufficient condition for an Evolving System with an adap-
tive key component controller to have guaranteed bounded gains and asymptotic tracking is
that the system be ASPR. This idea will be developed further in a subsequent section. Note
that the theory developed in (Fuentes & Balas, 2000) could also be applied to design the key
component adaptive controller to track a desired reference model and reject disturbances.

4.2 Results of Restoring Stability to Ex. 1 with Adaptive Key Component Controllers

A Simulink model was created to implement the adaptive key component controller for ex. 1.
Simulations were run with the connection parameter, €15, ranging from 0 to 1, allowing the
system to go from unconnected components to a fully Evolved System. The key component
controller was able to maintain system stability during the entire evolution process when it
used the input-output ports on mass 1 of component 1, see fig. [f} When component 1 was the
key component, the Evolving System is ASPR.
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Fig. 6. Nondimensional position displacements of Ex. 1 with adaptive key component con-
troller on component 1.
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Fig. 7. Nondimensional position displacements of Ex. 1 with adaptive key component con-
troller on mass 3 of component 2.

When the key component controller was located on component 2 and used the input-
output ports on mass 3, stability was not maintained, see fig. [7} The adaptive key component
controller was not able to restore stability on mass 3 because that system had nonminimum
phase zeros at 0.00515 £ 0.2009i, i.e., the system was not ASPR.

5. Inheritance of Passivity Properties in Evolving Systems

In this section we explore the inheritance of different types of passivity in Evolving Systems.
First we give some theorems on the inheritance of these traits in systems connected in feed-
back. Then we use the admittance-impedance formulation of Evolving Systems developed in
Section [2.4]to determine the condition under which passivity traits are inherited in Evolving
Systems. We use these results to determine the sufficient condition for LTI Evolving Sys-
tems with an adaptive key component controller to be guaranteed to have bounded gains and
asymptotic state tracking.

Intuitively, a system is passive if the energy stored by the system is less than or equal to
the energy supplied. Physical systems satisfy energy conservation equations of the form

d
7 [Stored Energy] = [External Power Input] + [Internal Power Generation)] (33)



Definition 5.1 We say that a nonlinear system of the form

x = f(xu); x(0)=xg
ot .
is passive if it has an positive definite energy storage function, V (x), that satisfies
V(x) = (y,u) — S(x) =yTu— S(x) (35)
where S(x) is a positive semi-definite function, i.e., S(x) > 0.
The term V(x) in eq represents the energy storage rate of the system. The external

power input term in eq. [33|is represented by the inner product of the input and the output
of the system, i.e., yTu. Note that V(x) can also be seen as a Lyapunov candidate function.

Excellent references exist on passivity in linear and nonlinear systems, see (1993);
Wen| (1988); Slotine & Li| (1991)); [sidoril (1995).

Fig. 8. Admittance-Impedance feedback connection of two nonlinear subsystems.

We can use the nonlinear impedance and admittance operators introduced in section [2.4]
to find the state space representation of the impedance and admittance of Evolving System
components. The nonlinear state space representation of the admittance of one component
connected to the impedance of a second component is shown in fig. |8l We use the following
representation for components that are nonlinear in state

Xi = Ai(x)+eBi(x;)u; +Bf (x;)uf!
yi = Gi(x) (36)
v o= Clx)
Definition 5.2 Consider a system that is nonlinear in state and is given by
x = A(K)+B(x)u
37
{y 2 el e
We say that this system is Strictly Passive when 3V (x) > 0 Vx # 0 such that
V(x) = (wy) = S(x) (38)

with S(x) > 0 Vx # 0.



Definition 5.3 Consider a nonlinear system of the form given by

(12 e

We say that this system is Almost Strictly Passive (ASP) when there is some output feedback,
u = Gy + uy, that makes it strictly passive.

We can state the following result about the inheritance of strict passivity in systems con-
nected in feedback.

Theorem 5.4 Suppose we have a pair of subsystems of the form

X; = Al(xl)+B ( i)uiJrBlA(xi)ulA
yi = GCi(x) (40)
v = Ci(x)

(

= " yﬁ) ({uz] {”
where i = 1,2 and both subsystems , and ,

Y ( L‘f‘} {Y{‘ “ﬁq Yﬁq

ergy storage functions Vi (x1) and V,(xp). Then the feedback connection of the two subsystems, where
i )

y2

) are strictly passive with en-

A
(y1 =wup) and (u; = —y,), will leave the resulting composite system (uA = {3}4} YA = {
2
strictly passive.
Proof: Form the composite system by connecting (up,y;) in feedback with (up,y;), which
gives us y; = up and u; = —y,. Let the energy storage function for the composite system be

V(x) = Vi (x1) + Va(x2). Using the fact that both components are strictly passive, and making
the substitutions for the feedback connection, we have

) = ([w] ] w] [y2 . .
V(x) <_uiq_ s >+< uf|” y2}> (S51(x1) + S2(x2))
= (<u1,Y1>+<u{‘ry1 )+( wy,y2) + (ug',ys')) — S(x)
= ((=y2y1) + (Wl yd) + ((yuy2) + (s, y4)) — S(x) (41)
_ _u{r _Yfr > ~S(x)
ut |’ [y3]

with §(x) = S1(x1) 4+ Sa(x2) >0 Vx= Kl} # 0. Therefore, by the definition of strict passivity,
2

A A
the composite system, given by <u A= {3}4} YA = B}L‘} ) remains strictly passive. O
2 2

We have shown that the feedback connection of two strictly passive systems results in
a composite system that is strictly passive. Hence, strict passivity is inherited by systems
connected in feedback. We now give a result on the inheritance of almost strict passivity.

Theorem 5.5 Suppose we have a pair of subsystems of the form

X; A;(x;) + €Bj(x;)u; + B (x;)uf!
yi = GCi(x) (42)
yd = CAx)



where i = 1,2 and both subsystems ([u}‘} , {y}‘}) and ({uﬂ , {Yi}) are almost strictly pas-
url 1y Wl Ly2

sive with enerqy storage function Vi(xq) and Vp(xp). Then the feedback connection of the
two subsystems, where (y1 = up) and (ug = —y,), will leave the resulting composite system
A A
(uA = {u%} YA = {y}q]) almost strictly passive.
u Y2

Proof: By the definition of almost strict passivity, there exists output feedback control that
makes each of the subsystems strictly passive. Output feedback of the form u = Gy + u, can
be added to a system (A(x),B(x),C(x)) to obtain

{)‘( = A(x)+B(x)GC(x) + B(x)u,
y = €K

Let ulA = GlAylA +u}, where i = 1,2, be the output feedback that makes the subsystems given
by eq. strictly passive. The subsystems with ulA defined as above are now both strictly
passive. We can connect the two subsystems in feedback, with (y; = up) and (u; = —y,).
By Theo. the composite system resulting from the feedback connection of two strictly
passive systems is strictly passive. Thus, the composite system (uy4,y4) is strictly passive.
A A A r
Now let {u%} = {Gl OA} |:y}4:| + {u}} . Adding this output feedback to the composite
L) 0 Gylly L)
system, (ug,y4) formed from the original subsystem components without the output feed-
back, is equivalent to adding the output feedback to the components and then connecting
them in feedback. Since the two methods of adding output feedback are equivalent, we can
add output feedback to the composite system, resulting in a strictly passive system. Hence by
the definition of almost strict passivity, the composite system is almost strictly passive. Thus,
almost strict passivity is inherited, and the result is true. g

(43)

Theorem 5.6 A LTI system given by (A, B, C) is strict positive real iff it is strictly passive.

Proof: First we show that if (A, B,C) is SPR, then it is strictly passive. Since (A,B,C) is SPR,
the Kalman-Yacubovic Lemma (Vidyasagar,|1993) implies that 3 € > 0 such that

(A+el)TP+P(A +el)=-Q (44)
PB =CT
with Q > 0 and P > 0. We can rearrange eq. [44]to obtain
ATP + PA = —(Q +2¢P)
{ PB=C’ (45)

Since P > 0 and Q > 0, then W(e) = Q 4 2¢P > 0. Choose V(x) = %xTPx with P chosen as in
eq.[44and P > 0. The time derivative along any state trajectory of V(x) is given by

V(x) = 3 (x"PAx+ x"PBux)
= 3x"(ATP+PA)x + x"PBu
= —%xTW(e)x—l— (Cx)Tu
= —S(x)+y'u

(46)

Therefore (A, B, C) is strictly passive.



We now show that if (A, B, C) is strictly passive, then it is SPR. Since (A, B, C) is strictly
passive, we have V(x) = —S(x) + y u with S(x) > 0. Choose S(x) = W(e), with P and Q as
in eq. Then all the previous arguments can be reversed, giving the desired result. O

In Section [2.4f we showed that the physical connection of two Evolving System compo-
nents is equivalent to the feedback connection of the admittance of one component and the
impedance of the other component. Consequently, if the subsystem components of an Evolv-
ing System are in admittance-impedance form, then by Theo. and Theo. 5.5 we see that
strict passivity and almost strict passivity are traits that are always inherited in nonlinear
Evolving Systems. Therefore, if the impedance of one component and the admittance of the
other component are both strictly passive, then their feedback connection will be strictly pas-
sive. The same is true for almost strict passivity.

The following result gives the sufficient condition for an LTI Evolving System with an
adaptive key component controller to be guaranteed to have bounded gains and asymptotic
output tracking.

Theorem 5.7 Consider a two component linear time-invariant Evolving System given by

{ x; = Ajxj+eBju; + B{‘uf‘ (47)

yi = GCx

where i = 1,2. Let component 1 have an adaptive key component controller with the following direct
adaptive control law

A A
u.l GYl (48)
{ G = -yi(y{)™H; H>0

If both components of the Evolving System are almost strictly passive from an admittance-impedance
point of view, then the adaptive gains, G, are bounded and y — 0 as t — oo.

Proof: By Theo. since both components are almost strictly passive, then the composite
system resulting from the feedback connection of the components is almost strictly passive.
In Theo. we showed that for linear time-invariant systems, strict passivity is equivalent to
the strict positive real property. A system that is almost strict positive real (ASPR) is one that
can be made strict positive real with output feedback. Hence, for LTI systems, almost strict
positive real is equivalent to almost strict passivity. Since the Evolving System given by eq. [47]
is an almost strictly passive LTI system, it is an almost strict positive real system. Theorem 4.3
states that the sufficient condition for a LTI system with an adaptive control law given by eq.
to be guaranteed to have bounded gains and asymptotic output tracking is that the system
be almost strict positive real. Therefore, by Theo. the adaptive gains, G, are bounded and
y—0ast— oo. g

We think of the ports u; and u; as being the admittance-impedance ports through which
the components make contact. For an Evolving System that has an adaptive key component
controller, one of the ports uf‘ or u3' would be used for the key component controller to aug-
ment the system to restore stability if necessary. The ports uf‘ or uf could also be used to add
output feedback to make the Evolving System strictly passive.



6. Inheritance of Dissipativity Properties in Evolving Systems

In this section we briefly present several results that were presented in (Frost & Balas| [2010).

Definition 6.1 Consider a nonlinear system of the form given by

x = A(x)+B(x)u
2 @

We say that this system is Strictly Dissipative when 3V (x) > 0Vx # 0 such that ¥x

VVA(x) < —5(x) (50)
VVB(x) = CT(x)
where VV = gradient V and S(x) > 0Vx # 0.
The function V(x) is the Lyapunov candidate function for eq. 9| The function, V (x), is related
to VV by the following
V(x) = VV[A(x) + B(x)u] (51)
The above says that the storage rate is always less than the external power. This can be
seen by using eq. [50|to obtain

V(x) = VV[A( ) + B(x)u]
< =S(x)+CT(x)u (52)
= —S5(x)+(yu)

Taking u = 0, it is easy to see that eq. [52]implies eq.[50{a), but not necessarily eq. 50[b). So eq.
B0Jimplies eq. p2]but not conversely. The two are only equivalent if eq. [50[a) is an equality. If
the inequalities in eq. [50|and eq. [52|are equalities, then the property is called Strict Passivity,
which was defined in section[Bl

Definition 6.2 Consider a nonlinear system of the form given by

x = A(X)+B(x)u
{y — C(x) )

We say that this system is Almost Strictly Dissipative (ASD) when there is some output feedback,
u = Gy + uy, that makes it strictly dissipative.

Theorem 6.3 If a nonlinear system given by (A(x),B(x),C(x)) is strictly passive, then it is strictly
dissipative.

Theorem 6.4 A LTI system given by (A,B,C) is strictly dissipative iff it is strictly passive.
Theorem 6.5 Suppose we have a pair of subsystems of the form

i

xi = Ai(x)
yi = GCi(x) (54)
v = Clx)



where i = 1,2 and both subsystems ({u}x} , [y}‘}) and ({uﬂ , {yﬂ) are almost
url i uy o 1y2

strictly dissipative with energy storage function Vy(xq) and Vo (x), and

VVieB;(x;) = €C{ (x;) (55)
Then the feedback connection of the two subsystems, where (y1 = up) and (u; = —y,),
7 yi

will leave the resulting composite system (uA = {2}4] /YA =
2

ya ) almost strictly dissipative.
2

A corollary of Theo. is that strict dissipativity is inherited by systems connected in
feedback.

Corollary 6.6 Suppose we have a pair of subsystems of the form

X = Ai(x;)+eBi(x)u; + B (x)uf
yi = GCi(x) (56)
v o= Clx)

where i = 1,2 and both subsystems ( {u}‘} , [y}‘} ) and < {uﬂ , {yﬁ} > are strictly
url i wl 1y2

dissipative with energy storage function Vi (x1) and V,(xz), and

VVieBi(x;) = eCf (x;) (57)
Then the feedback connection of the two subsystems, where (y1 = up) and (u; = —y,),
| . _ el A
will leave the resulting composite system | uy = uA|YA= vA strictly
2 2

dissipative.

Theorem [6.5]and Cor. can both be used to show that two component nonlinear Evolving
Systems with components that are either both almost strictly dissipative or strictly dissipa-
tive from an admittance-impedance point of view inherit the properties of their subsystem
components. Thus strict dissipativity and almost strict dissipativity are traits that are always
inherited in nonlinear Evolving Systems.

Theorem 6.7 Consider a two component nonlinear time-invariant Evolving System given by

{ X = Ai(x;)+eBi(x)u; + B (x)uf (58)

yi = Gi(x)
where i = 1,2 with energy storage functions Vy(x1) and V,(xp). Let component 1 have an adaptive
key component controller with the following direct adaptive control law

A A
u = Gyq (59)
{ G = —y{(y{)™H; H>0



Assume that Vy and V, are positive Vx # 0 and radially unbounded, and (A(x),B(x),C(x)) are
continuous functions of x and S(x) is positive Vx # 0 and has continuous partial derivatives in x.
Furthermore, assume:

1. Component 2, given by (up,y2), is strictly dissipative and in impedance form;
2. Component 1, given by (uil,y{\), is almost strictly dissipative;
3. Component 1, given by (uy,y1), is in admittance form.

Then the adaptive key component controller given by eq. |59|produces global asymptotic state stabil-

ity, ie, x = [x1xp] T 0as t — oo with bounded adaptive gains when component 1 is joined with
component 2 into an Evolved System and the outputs y; = C;(x;) — 0 as t — oo,

The above results assume that the Lyapunov function, V(x), is defined on the entire do-
main, R", of the system. Thus all the stability and dissipativity results are global results. The
same is true for the other results given in this chapter. For instance, Theo. says that a
nonlinear Evolving System with an adaptive key component controller as given by eq. [48|will
have bounded gains and globally asymptotic state tracking. However, the Lyapunov func-
tion, V(x), might only be defined on a neighborhood N;(0,7;) = {ﬁ < ri} of the origin, in

i
which case the results could only be local at the best.

Using Lemma 1 from (Balas et al, 2008), 36 > 0 such that if the initial conditions of the
system are close enough to the origin, i.e., within Ny = (0,J), then the trajectories are guar-
anteed to stay in the neighborhood of the origin for which the Lyapunov function is defined.
In such a case, then the results would be local. For instance, if the Lyapunov function V (x)
in Theo. only has the assumed properties on a neighborhood N;(0,7;) = —H): T < r,} of

1
the origin and the trajectories all remain inside the neighborhood, then the stability is locally
asymptotic to the origin. In that case, Theo. [6.7|gives the result that a nonlinear Evolving Sys-
tem with an adaptive key component controller as given by eq. [59|will have bounded gains
and locally asymptotic state tracking.

7. Conclusions

In this chapter, we presented the motivation and the framework for Evolving Systems, a new
area of aerospace research. We developed the adaptive key component controller approach to
maintain stability in Evolving Systems that would otherwise fail to inherit the stability traits
of their components. We showed that strict passivity, almost strict passivity, strict dissipa-
tivity, and almost strict dissipativity are inherited by systems connected in feedback. Using
the impedance-admittance formulation of contact dynamics between components of Evolving
Systems, we showed that these traits are also always inherited in nonlinear Evolving Systems.
Finally, we gave sufficient conditions for the use of the adaptive key component controller
with linear and nonlinear Evolving Systems.
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